
Rebel Messenger Service
Software Design Document
Version 1.1 – Elaboration Milestone
Revision History

	Date
	Version
	Description
	Author

	26 November, 2010
	1.0
	Initial SDD
	Beauchamp, Samuel

Carter, Greg

Conradi, Jeff

Le, Tri

Roberts, Gary

Thomas, Rainee

Uzowihe, Kenna

Watkins, Charles

	04 December, 2010
	1.1
	Complete SDD
	Beauchamp, Samuel

Carter, Greg

Conradi, Jeff

Le, Tri

Roberts, Gary

Thomas, Rainee

Uzowihe, Kenna

Watkins, Charles

	
	
	
	

	
	
	
	

Table of Contents

41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
Definitions, Acronyms, and Abbreviations
4
1.4
References
4
1.5
Overview
4
2.
Architectural Representation
5
3.
Architectural Goals and Constraints
5
4.
Use-Case View
5
4.1
User Interfaces
6
4.2
System Inputs and Outputs
8
4.2.1
Inputs
8
4.2.2
Outputs
8
4.3
Use-Case Realizations
8
4.3.1
Risk ranking of Use Cases
8
4.3.2
Use Case Diagram
8

4.3.3
Use Case Descriptions
9

4.3.4
State Chart Diagram
9
5.
Logical View
11
5.1
Overview
11
5.2
Architecturally Significant Class Specifications
11
5.3
Risk Rank of classes
16
5.4
Sequence Diagram
17
5.5
Collaboration Diagram
19
6.
Performance
20
7.
Quality
20

Software Architecture Document

1. Introduction

1.1
Purpose

The purpose of this document is to collect, analyze, and define high-level needs and features of the Rebel Messenger service for UNLV students. It focuses on the capabilities needed by the Rebel Messenger users. The details of how the Rebel Messenger system fulfills these needs are provided in the Software Requirements Specification.
1.2
Scope

The Rebel Messenger client software will be installed and used on individual user PCs. The server software that will connect clients will be installed and used on a single machine. The server will be designed to be used by the system administrators from a dedicated server. The Server has been written to be infinitely scalable and able to accommodate multiple infrastructure configurations for the service. Both the server and client will use the TCP Protocol.
The Rebel Messenger system will enable the users to register for an account, log in, send friend requests, reject friend requests, send messages, receive messages, the saving of a buddy list, viewing of the buddy list, request new user password, and log out of the client.

The Rebel Messenger system will enable the administrators to log in, send messages, receive messages, view buddy list, confirm user requests, delete accounts, reset passwords, query users, broadcast announcements, and log out.
1.3 Definitions, Acronyms, and Abbreviations

(UNLV) – University of Nevada, Las Vegas
(TCP) Transmission Control Protocol – An internet protocol that uses retransmission to ensure all data is received. This choice is ideal over other less reliable protocols for smaller transmissions that require reliability.

(IM) Instant Messaging - A form of real-time direct text-based communication between two or more people using personal computers or other devices. The user's text is conveyed over a network, such as the Internet.

1.4 References

None.

1.5 Overview

Rebel Messenger provides online instant messaging to any student enrolled at the University of Nevada at Las Vegas. The Rebel Messenger service offers an online community for users to participate in instant messaging and general online chatting services. Each student of UNLV will have access to a Rebel Messenger account free of charge. The software will also be scalable to meet the needs of individual departments within the UNLV network, allowing departments to have private chat servers that are independent from the UNLV general Rebel Messenger server for the departments use.

The remainder of this Vision document will identify Product Features, Other Product Requirements and Documentation Requirements.
2. Architectural Representation

[image: image1.emf]Rebel Messenger

2010

InitializationClass

userRecord

admin

convsRecord

database

controlClass

student

(from Actors)

user

buddyRecord

client

administrator

(from Actors)

interfaceClass

Figure 1 Architectural diagram of the product
3. Architectural Goals and Constraints

The “Rebel Messaging System” server software will run on a dedicated platform with access to the internet, and an SQL database. The client will run as a standard service on any Windows PC, and the machine must have access to the internet. Both the client and the server will also be connected to some form of standard graphical output (monitor), and some way of receiving standard input (keyboard). Neither of these has to be physical connections to devices. In fact, the server should ideally be network-accessible through some remote connection to the shell.

The SQL database will be used to store and manage user credentials and buddy records. All other information will be stored in local main memory without the aid of the database interface.

The program is currently implemented for any NT-based Windows OS, but it can be ported to Linux and Mac-based systems in the future.

4. Use-Case View

4.1 User Interfaces

[image: image2.png]Password

Foraot Your Password?
Not a membervet? Sign Up!

Figure 2 Initial screen

[image: image3.jpg]Reauest Frend | [Remove Fiend | [Rank Friend

Figure 3 Screen when a client/user logs in
[image: image4.jpg]5 Conversation with Jeff .

Conversation

ou> Hey Jeff
<Uelt> Hey Rainee

Your Message:

Have you signed up for C5 4737

[image: image5.jpg]5 Conversation with Rainee ..

Conversation

<Rainee> Hey Jelf
Youw Hey Rainee

Your Message:

Figure 4 Screen when a message is sent to another client/user
4.2 System Inputs and Outputs

4.2.1 Inputs

User Input – input from the user shall be provided via the keyboard and the mouse
4.2.2 Outputs

Graphical – output from the program shall be displayed via the standard output, typically the user's monitor.
Database – user account changes, transactions, and other information shall be stored within the database of Rebel Messenger.
4.3 Use-Case Realizations

4.3.1 Risk ranking of Use Cases

Use Case Risk list is ranked from the highest to the lowest risk use case.

	Use Case Risk List

	High
	Manage User Accounts

Manage Buddy List

	Moderate
	Handle Messages

Register accounts

	Low
	Broadcast Message

Request New Password

Log In / Log Out

4.3.2 Use Case Diagram
[image: image6.emf]Register Account

(from Use-Case Model)

Request New Password

(from Use Case View)

Manage Buddy List

(from Use Case View)

Client

(from Use Case View)

Log In / Log Out

(from Use Case View)

Handle Messages

(from Use Case View)

Manage User Accounts

(from Use Case View)

Broadcast Announcements

(from Use Case View)

Administrator

(from Use Case View)

Figure 5 Use Case Diagram
4.3.3
Use Cases Descriptions
1) Login/Logout

· Details the process by which the user is able to create and destroy his or her session to the Rebel Messenger server

2) Manage Buddy List

· Details the process by which the user is able to add, remove, and rank buddies

3) Handle Messages

· Details the process by which the user is able to send and receive messages from users on his or her buddy list

4) Register Account

· Details the process by which the user first creates his or her account on the Rebel Messenger service

5) Request New Password

· Details the process by which the user is able to request his or her password to be reset by an administrator

6) Manage User Accounts

· Details the process by which an administrator is able to perform managerial tasks on registered users, such as listing and resetting their passwords

7) Broadcast Announcements

· Details the process by which an administrator is able to send a message to all currently logged in users and administrators

4.3.4
State Chart Diagrams
[image: image7.emf]System Entry

entry/ Display Login Screen

Error Display

exit/ Report the Errors

Get Username and Password

entry/ Verify Username and Password

do/ Verify User Status

exit/ Administrator Verified

Display Options

entry/ Display Options for User

Manage User

Accounts

do/ Check Input

exit/ Update Fields

Manage User Menu

entry/ Get User Choice

Manage Users Selected

Save

exit/ Save to Selected User File

Error in Input

Rebel Messenger

2010

More Inputs from User

Save Button

Figure 6 State chart showing the dynamic behavior of the Manage User Accounts use case
[image: image8.emf]System Entry

entry/ Display Login Screen

Error Display

exit/ Report the Errors

Get Username and Password

entry/ Verify Username and Password

do/ Verify User Status

exit/ User Verified

Display Options

entry/ Display Options for User

Manage Buddy List

do/ Check Input

exit/ Update Fields

Manage Buddy List Menu

entry/ Get User Choice

Manage Buddy List Selected

Save

exit/ Save to Buddy Record File

Save Button

More Inputs from User

Error in Input

Rebel Messenger

2010

Figure 7 State chart showing the dynamic behavior of the Manage Buddy List use case

5. Logical View

5.1 Overview

[image: image9.emf]Initialization Class

interfaceClass

interfaceClass()

~interfaceClass()

registerAccount()

sendMessage()

receiveMessage()

updateFriends()

requestPassword()

friendRequest()

deleteFriend()

saveConvs()

changePassword()

login()

logout()

controlClass

controlClass()

~controlClass()

registerAccount()

sendMessage()

recieveMessage()

updateFriends()

requestPassword()

friendRequest()

deleteFriend()

saveConvs()

changePassword()

issuePassword()

verifyLogin()

convsRecord

convs : :*string

timeStamp : :date

hostClient : :client

guestClient : :client

convsRecord()

~convsRecord()

client

client()

~client()

friendRequest()

registerAccount()

requestPasswd()

changePasswd()

admin

admin()

~admin()

broadcastMsg()

buddyRecord

buddyName : :client

friendRank : :int

buddyRecord()

~buddyRecord()

database

database()

~database()

getUser()

updateUser()

getBuddy()

updateBuddy()

getConvs()

deleteConvs()

updatePasswd()

user

firstName : :string

lastName : :string

handle : :string

rebelMail : :string

password : :string

standing : :int

user()

~user()

sendMessage()

recvMessage()

saveConvs()

userRecord

userName : :user

lastOnline : :date

isAdmin : :boolean

userRecord()

~userRecord()

isAdmin()

Rebel Messenger

2010

Figure 8 Class diagram

5.2 Architecturally Significant Class Specifications
5.2.1
Initialization Class

5.2.1.1 Brief Description

A control class which will load all the required components into memory during the execution lifetime of the RebelMessenger program

	CLASS
	A/M
	Type
	Name
	Description

	intializationClass
	
	
	
	This method is used for initialization.

5.2.2 User Class

5.2.2.1 Brief Description

An entity acting as a virtual class that will be invoked by either the client and admin class in the RebelMessenger application. This class will hold the majority of attributes associated with the two levels of user, both a standard client and administrator.
	CLASS
	A/M
	Type
	Name
	Description

	User
	
	
	
	

	
	M
	Void
	user
	This method is the constructor for the user class.

	
	M
	Void
	~user
	This method is the destructor for the user class.

	
	M
	Void
	sendMessage
	This method is used to sending message to other users

	
	M
	Void
	recvMessage
	This method is used receive message from other users

	
	M
	Void
	saveConvs
	This method saves a conversation to a conversation record

	
	A
	String
	firstName
	This attribute is the first name of the user.

	
	A
	String
	lastName
	This attribute is the last name of the user.

	
	A
	String
	handle
	This attribute is the user’s identification or nickname

	
	A
	String
	RebelMail
	This attribute is the user’s RebelMail address, required for registration

	
	A
	String
	Password
	This attribute is the password of the user

	
	A
	Int
	Standing
	This enumerated integer describes the users standing within the university

5.2.3 Client Class

5.2.3.1 Brief Description

An entity class inherited from the user class. This class represents a standard user with extended method such as friend request, register account and requesting and updating their personal password
	CLASS
	A/M
	Type
	Name
	Description

	Client
	
	
	
	

	
	M
	Void
	client
	This method is the constructor the client class.

	
	M
	Void
	~client
	This method is the destructor of the client class.

	
	M
	Void
	friendRequest
	This method is used to request another client to become friends

	
	M
	Void
	registerAccount
	This method complies information of user for a new account creation

	
	M
	Void
	requestPasswd
	This method

	
	M
	Void
	changePasswd
	This method will allow a client to set a personalized password once a default password has been issued by an admin

5.2.4 Admin Class

5.2.4.1 Brief Description

An entity class inherited from the user class. This class represents an administrative user with extended method such broadcast message to all user on the system.
	CLASS
	A/M
	Type
	Name
	Description

	Admin
	
	
	
	

	
	M
	Void
	admin
	This method is the constructor the administrator class.

	
	M
	Void
	~admin
	This method is the destructor of the administrator class.

	
	M
	Void
	broadcastMsg
	This method allows an admin to send messages to every client for system announcements

5.2.5 Database Class

5.2.5.1 Brief Description

A boundary class, the database will stores all the records involved in the application. Records such a userRecord, buddyRecord, and convsRecord will all be held within the database class, and any time data is stored or fetched from the database will be handled within this class.
	CLASS
	A/M
	Type
	Name
	Description

	Database
	
	
	
	

	
	M
	Void
	database
	This method is the constructor of the database class

	
	M
	Void
	~database
	This method is the destructor of the database class

	
	M
	Void
	getUser
	This method returns a user record from the database

	
	M
	Void
	updateUser
	This method updates a user record to the database

	
	M
	Void
	getBuddy
	This method returns a buddy record from the database

	
	M
	Void
	updateBuddy
	This method updates a buddy record to the database

	
	M
	Void
	getConvs
	This method returns a conversation record from the database

	
	M
	Void
	deleteConvs
	This method removes a conversation record from the database

	
	M
	Void
	updatePasswd
	This method assigns a new password to a user

5.2.6 BuddyRecord Class

5.2.6.1 Brief Description

This entity class is responsible storing data associated with a user’s buddy.
	CLASS
	A/M
	Type
	Name
	Description

	buddyRecord
	
	
	
	

	
	M
	Void
	buddyRecord
	This method is the constructor of the buddyRecord

	
	M
	Void
	~buddyRecord
	This method is the destructor of the buddyRecord

	
	A
	client
	buddyName
	This client attribute stores the information of the buddy held within the record

	
	A
	Int
	friendRank
	This attribute stores the rank of the buddy within a clients buddy list

5.2.7 ConvsRecord Class

5.2.7.1 Brief Description

This entity class stores a conversation if one is saved by a user, if desired
	CLASS
	A/M
	Type
	Name
	Description

	convsRecord
	
	
	
	

	
	M
	Void
	convsRecord
	This method is the constructor of the convsRecord

	
	M
	Void
	~convsRecord
	This method is the destructor of the convsRecord

	
	A
	String*
	convs
	This string pointer references the conversation buffer

	
	A
	Date
	timeStamp
	This date attribute stores the time and date when the conversation was saved

	
	A
	client
	hostClient
	This attribute references the client which initiated the conversation

	
	A
	client
	guestClient
	This attribute references the client that accepted the conversation

5.2.8 UserRecord Class

5.2.8.1 Brief Description

An entity class which contains information associated with registered users on the Rebel Messenger network.
	CLASS
	A/M
	Type
	Name
	Description

	userRecord
	
	
	
	

	
	M
	Void
	userRecord
	This method is the constructor of the userRecord

	
	M
	Void
	~userRecord
	This method is the destructor of the userRecord

	
	M
	Void
	isAdmin
	This method checks is the user within the record is an administrator

	
	A
	User
	userName
	This attribute stores a users data, either client or administrator

	
	A
	Date
	lastOnline
	This attribute holds the date in which was last online

	
	A
	Boolean
	isAdmin
	This attribute is a Boolean flag that determines if a user is a client or administrator

5.2.9 Control Class

5.2.9.1 Brief Description

A control class that handles the flow of requests and input from the user provided through the interface class.
	CLASS
	A/M
	Type
	Name
	Description

	controlClass
	
	
	
	

	
	M
	Void
	controlClass
	This method is the constructor of the controlClass.

	
	M
	Void
	~controlClass
	This method is the destructor of the controlClass.

	
	M
	Void
	registerAccount
	This method will allow a new client to register an account

	
	M
	Void
	sendMessage
	This method allows a user send message

	
	M
	Void
	receiveMessage
	This method accepts a new message to establish a conversation between users

	
	M
	Void
	updateFriends
	This method will update user’s buddy list and set rankings onto each buddy

	
	M
	Void
	requestPassword
	This method will request a new password to be issued to a client

	
	M
	Void
	friendRequest
	This method allows a client to request a new friend to be added to buddy list

	
	M
	Void
	deleteFriend
	This method removes a client from ones buddy list

	
	M
	Void
	saveConvs
	This method saves a conversation with another user into a convsRecord

	
	M
	Void
	changePassword
	This method allows a user to change their password

	
	M
	Void
	registerAccount
	This method will allow a new client to register an account

	
	M
	Void
	sendMessage
	This method allows a user send message

	
	M
	Void
	verifyLogin
	This method verifies login.

5.2.10 Interface Class

5.2.10.1 Brief Description

A boundary class that represents the visual components connecting the user to the application and system components.

	CLASS
	A/M
	Type
	Name
	Description

	interfaceClass
	M
	Void
	interfaceClass
	This method is the constructor of the interfaceClass.

	
	M
	Void
	~interfaceClass
	This method is the destructor of the interfaceClass.

	
	M
	Void
	registerAccount
	This method will allow a new client to register an account

	
	M
	Void
	sendMessage
	This method allows a user send message

	
	M
	Void
	receiveMessage
	This method accepts a new message to establish a conversation between users

	
	M
	Void
	updateFriends
	This method will update user’s buddy list and set rankings onto each buddy

	
	M
	Void
	requestPassword
	This method will request a new password to be issued to a client

	
	M
	Void
	friendRequest
	This method allows a client to request a new friend to be added to buddy list

	
	M
	Void
	deleteFriend
	This method removes a client from ones buddy list

	
	M
	Void
	saveConvs
	This method saves a conversation with another user into a convsRecord

	
	M
	Void
	changePassword
	This method allows a user to change their password

	
	M
	Void
	login
	This method allows login.

	
	M
	Void
	logout
	This method allows logout.

Table 1 Classes (A/M indicates Attribute or Method, with capital letters indicating Public)
5.3 Risk Rank of classes

Class Risk list is ranked from the highest to the lowest risk class.

	userRecord
	Highest

	user
	

	buddyRecord
	

	interfaceClass
	

	controlClass
	

	database
	

	convsRecord
	

	admin
	

	client
	Lowest

5.4 Sequence Diagrams

[image: image10.emf] : Admin : interfaceClass

 : controlClass : database

 : userRecord

logout()

login()

changePassword()

issuePassword()

updatePasswd()

Return success

Return completion

verifyLogin()

getUser()

Return user

Return successful login

Return admin status

isAdmin()

Rebel Messenger

2010

Figure 9 Sequence Diagram of Manage User Accounts Use Case

[image: image11.emf] : Client

 : interfaceClass

 : controlClass

 : database : buddyRecord

login()

verifyLogin()

getUser()

Return user

Return verification

deleteFriend()

deleteFriend()

getBuddyRecord()

Return completion

logout()

~buddyRecord()

deleteRecord()

Return record

Return

Rebel Messenger

2010

Figure 10 Sequence Diagram of Manage Buddy List Use Case

5.5 Collaboration Diagram

[image: image12.emf] : Admin

 : interfaceClass

 : controlClass

 : database

 : userRecord

Rebel Messenger

2010

1: login() 8: changePassword()

13: logout()

2: verifyLogin()

7: Return successful login

9: issuePassword()

12: Return completion

3: getUser()

4: Return user

10: updatePasswd()

11: Return success

5: isAdmin()

6: Return admin status

Figure 11 Collaboration Diagram of Manage User Accounts Use Case

[image: image13.emf]:Student

 : interfaceClass

 : controlClass

 : database

 : buddyRecord

Rebel Messenger

2010

1: login() 6: deleteFriend()

13: logout()

2: verifyLogin()

5: Return verification

7: deleteFriend()

12: Return completion

10: ~buddyRecord()

3: getUser()

4: Return user

8: getBuddyRecord()

9: Return record

11: deleteRecord()

Figure 12 Collaboration Diagram of Manage Buddy List Use Case
6. Performance

Performance of the messenger will be highly dependent on the network latency, to maintain high performance standards across reliable networks, the system has been designed to limit messages to 16kb. The system will require a Windows NT or higher to allow for .net framework.
7. Quality

The quality of the product will meet the standard for basic IM services. Given proper hardware conditions and a reliable network connection users should get the sense the message is received instantly.
PAGE

